Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Glob Med Genet ; 10(2): 72-78, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2315894

ABSTRACT

Background and Aim Immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in newborns and children after prophylactic immunization is currently a relevant research topic. The present study analyzes the issue by examining the possibility that the anti-SARS-CoV-2 immune responses are not uniquely directed against the virus but can-via molecular mimicry and the consequent cross-reactivity-also hit human proteins involved in infantile diseases. Methods Human proteins that-if altered-associate with infantile disorders were searched for minimal immune pentapeptide determinants shared with SARS-CoV-2 spike glycoprotein (gp). Then, the shared pentapeptides were analyzed for immunologic potential and immunologic imprinting phenomena. Results Comparative sequence analysis shows that: (1) numerous pentapeptides (namely, 54) are common to SARS-CoV-2 spike gp and human proteins that, when altered, are linked to infantile diseases; (2) all the shared peptides have an immunologic potential since they are present in experimentally validated SARS-CoV-2 spike gp-derived epitopes; and (3) many of the shared peptides are also hosted in infectious pathogens to which children can have already been exposed, thus making immunologic imprint phenomena feasible. Conclusion Molecular mimicry and the consequent cross-reactivity can represent the mechanism that connects exposure to SARS-CoV-2 and various pediatric diseases, with a fundamental role of the immunologic memory and the history of the child's infections in determining and specifying the immune response and the pathologic autoimmune sequela.

2.
Glob Med Genet ; 8(1): 32-37, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1145068

ABSTRACT

Recently, it was found that proteomes from poliovirus, measles virus, dengue virus, and severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) have high molecular mimicry at the heptapeptide level with the human proteome, while heptapeptide commonality is minimal or absent with proteomes from nonhuman primates, that is, gorilla, chimpanzee, and rhesus macaque. To acquire more data on the issue, analyses here have been expanded to Ebola virus, Francisella tularensis , human immunodeficiency virus-1 (HIV-1), Toxoplasma gondii , Variola virus, and Yersinia pestis . Results confirm that heptapeptide overlap is high between pathogens and Homo sapiens , but not between pathogens and primates. Data are discussed in light of the possible genetic bases that differently model primate phenomes, thus possibly underlying the zero/low level of molecular mimicry between infectious agents and primates. Notably, this study might help address preclinical vaccine tests that currently utilize primates as animal models, since autoimmune cross-reactions and the consequent adverse events cannot occur in absentia of shared sequences.

SELECTION OF CITATIONS
SEARCH DETAIL